UTKALMANI GOPABANDHU INSTITUTE OF

ENGINEERING, ROURKELA

LESSON PLAN

SESSION: 2023-2024

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SUBJECT CODE: Th.3

NAME OF THE SUBJECT: DIGITAL SIGNAL PROCESSING (DSP)

BRANCH: ELECTRONICS & TELECOMMUNICATION

SEMESTER: 6TH

NUMBER OF CLASSES ALLOTED PER WEEK: 4

TOTAL PERIODS ALLOTED TO THE SUBJECT ACCORDING TO SCTEVT: 60

NAME OF THE FACULTY: MANASI PRIYADARSHINI

LESSON PLAN

SUBJECT CODE:	Th.3
NAME OF THE SUBJECT :	DIGITAL SIGNAL PROCESING (DSP)
BRANCH:	ELECTRONICS & TELECOMMUNICATION
SEMESTER:	DIPLOMA 6 th SEM
PERIODS PER WEEK:	4 (16/01/2024 to 26/04/2024)

Week/Date	<u>Lecture</u>	Topic to be covered
1 st week	1 st	Chapter-1:
		Basics of Signals, Systems & Signal processing- basicelement of a
		digital signal processing system.
	2 nd	Advantages of digital signal processing over analog signal processing.
	3 rd	Classification of signals - Multi channel& Multi-dimensional signal,
		Continuous time verses Discrete -times Signal, Continuousvalued verses
		Discrete -valued signals.
	4th	Deterministic signal, random signal, analog signal and digitalsignal
	1 st	Concept of frequency in continuous time & discrete time signals-
2 nd week		Continuous-time sinusoidal signals-Discrete-time sinusoidal signals-
		Harmonically related complex exponential
	2 nd	Analog to Digital & Digital to Analog conversion & explanation of
		the following thefollowing.
		Sampling of Analog signal and The sampling theorem.
	3 rd	Ouantization of continuous amplitude signals and Coding of quantized
		sample.
		Digital to analog conversion
	4 th	Analysis of digital signals vs. discrete time signals

SUBJECT CODE:	Th.3
NAME OF THE SUBJECT :	DIGITAL SIGNAL PROCESING (DSP)
BRANCH:	ELECTRONICS & TELECOMMUNICATION
SEMESTER:	DIPLOMA 6 th SEM
PERIODS PER WEEK:	4 (16/01/2024 to 26/04/2024)

Week/Date	Lecture	Topic to be covered
3rd week 1st		Chapter 2:
		DISCRETE TIME SIGNALS & SYSTEMS.
		Concept of Discrete time signals.
		Elementary Discrete time signals.
	2nd	Classification Discrete time signal: energy and power signals and related problems
	3rd	Periodic and aperiodic signals, even and odd signals
	4th	Simple manipulation of discrete time signal: shifting, scaling and folding
4 th week	1 st	Discrete time system: Input-output of system. Block diagram ofdiscrete- time systems
	2 nd	Classification of discrete time system: static vs. dynamic, causal vs. non causal system
	3 rd	Linear vs. non linear system
	4 th	Time variant vs.time invariant system, stable vs. unstable system, interconnection of discrete time system.

SUBJE	CT C	ODE:	Th.3	
NAME	OF THE	SUBJECT :	DIGITAL SIGNAL PROCESING (DSP)	
BRANCH:			ELECTRONICS & TELECOMMUNICATION	
SEME	ESTER:		DIPLOMA 6 th SEM	
PERIC	DDS PER	WEEK:	4 (16/01/2024 to 26/04/2024)	
Week/Date	Lecture		Topic to be covered	
5 th week	1 st	Different techniques for the Analysis oflinearsystem. Resolution of a discrete time signal into impulses.		
	2 nd	Problems related to convol	ution sum	
	3 rd	Response of LTI system to arbitrary inputsusingconvolution sum. Convolution & interconnection of LTIsystem -properties.		
	4 th	Study systems with finite d	luration and infinited uration impulse response.	
6 th week	1 st	Discrete time system described by differenceequation. Recursive & non-recursive discrete time system		
	2 nd	Determine the impulse response of linear time invariant recursive system		
	3 rd	Correlation of Discrete Time signals		
	4 th	Chapter 3:THE Z-TRAN LTISYSTEM. Introduction to Z-transform	NSFORM & ITS APPLICATION TO THE ANALYSIS OF n & its application to LTIsystem.	

SUBJECT CODE:	Th.3
NAME OF THE SUBJECT :	DIGITAL SIGNAL PROCESING (DSP)
BRANCH:	ELECTRONICS & TELECOMMUNICATION
SEMESTER:	DIPLOMA 6 th SEM
PERIODS PER WEEK:	4 (16/01/2024 to 26/04/2024)

Week/Date	<u>Lecture</u>	Topic to be covered			
7 th week	1 st	Z transform of infinite duration signals			
	2^{nd}	Properties of ROC and some problems related to elementary signals			
	3 rd	Properties of z transform			
	4 th	Definition of poles and zeros of a rational function			
8 th week	1 st	Pole location time domain behaviour for casualsignals. System function of a linear time invariantsystem			
	2 nd	Introduction to inverse z transform			
	3 rd	Inverse Z-transform by partial fraction expansion and long division method			
	4 th	continued			
9 th week	1 st	Some problems related to partial fraction expansion			
	2 nd	continued			
	3 rd	Causality and stability test			
	4 th	continued			

SUBJECT CODE:	Th.3
NAME OF THE SUBJECT :	DIGITAL SIGNAL PROCESING (DSP)
BRANCH:	ELECTRONICS & TELECOMMUNICATION
SEMESTER:	DIPLOMA 6 th SEM
PERIODS PER WEEK:	4 (16/01/2024 to 26/04/2024)

Week/Date	Lecture	<u>Topic to be covered</u>
10 th week	1 st	Chapter-4: DISCUSS FOURIER
		TRANSFORM: ITS APPLICATIONS
		AND <u>PROPERTIES</u> Convert of discuste Founier
		transform Frequency
		domain sampling and
		reconstruction of discrete
		timesignals.
		6
	2 nd	Discrete Time Fourier transformation(DTFT)
		Discrete Fourier transformation (DFT).
	3 rd	Problems on DFT
	4 th	Computation of DFT as a linear
		transformation
11 th week	1 st	IDFT and problems related to IDFT
	2 nd	Relation of DFT to other transforms.
	3 rd	Properties of the DFT.
	4 th	Multiplication of two DFT & circular convolution

SUBJECT CODE:	Th.3
NAME OF THE SUBJECT :	DIGITAL SIGNAL PROCESING (DSP)
BRANCH:	ELECTRONICS & TELECOMMUNICATION
SEMESTER:	DIPLOMA 6 th SEM
PERIODS PER WEEK:	4 (16/01/2024 to 26/04/2024)

12 th week	1 st	Problems related to circular convolution
	2 nd	Chapter-5:
		FAST FOURIER TRANSFORM ALGORITHM & DIGITAL FILTERS.
		Computation of DFT & FFT algorithm.Direct computation of
		DFT.
	3 rd	Divide and Conquer Approach tocomputation of DFT
		Radix-2 algorithm. (Small Problems)
	4 th	DIT ALGORITHM
13 th week	1 st	Problems related to DIT ALGORITHM
	2 nd	DIF ALGORITHM
	3 rd	Problems related to DIF ALGORITHM
	4 th	Application of FFT algorithms

SUBJECT CODE:	Th.3
NAME OF THE SUBJECT :	DIGITAL SIGNAL PROCESING (DSP)
BRANCH:	ELECTRONICS & TELECOMMUNICATION
SEMESTER:	DIPLOMA 6 th SEM
PERIODS PER WEEK:	4 (16/01/2024 to 26/04/2024)

14th week	1 st	Introduction to digital filters.(FIR Filters)&General considerations
	2 nd	Introduction to DSP architecture, familiarisation of different typesof processor
	3 rd	CHAPTERWISE short question discussion and previous year question discussion
	4 th	continued
15 th Week	1 st	CHAPTERWISE long question discussionand previous year question discussion
	2 nd	continued
	3rd	NA
	4th	NA