UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA

LESSON PLAN

SESSION: 2025-2026

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SUBJECT CODE: Th.3

NAME OF THE SUBJECT: DIGITAL ELECTRONICS

BRANCH: ELECTRONICS & TELECOMMUNICATION

SEMESTER: DIPLOMA 3rd SEM

NUMBER OF CLASSES ALLOTED PER WEEK: 3

TOTAL PERIODS ALLOTED TO THE SUBJECT ACCORDING TO

SCTEVT: 45

NAME OF THE FACULTY: MANASI PRIYADARSHINI

UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA

LESSON PLAN

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SUBJECT CODE: Th.3

NAME: DIGITAL ELECTRONICS

BRANCH: ELECTRONICS & TELECOMMUNICATION

SEMESTER: DIPLOMA -III

PERIODS PER WEEK: 3

NAME OF THE FACULTY: MANASI PRIYADARSHINI

NO OF CLASSES ALLOTTED PER WEEK: 3 (14/07/2025 to 15/11/2025)

Week/Date	Lecture	Topic to be covered
1st week	1 st	UNIT-1
		Logic Gates
		1.1 Basic logic gates: OR, AND, and NOT
		1.1.1 Truth tables
		1.1.2 Logic symbols
		1.1.3 Logic voltage levels
		1.1.4 Logic circuit design examples
	2 nd	1.2Integrated Circuits
		1.3NOR, NAND, Exclusive OR, and Exclusive NOR gates.
		1.4NOR and NAND gates used as inverters
	3 rd	1.5Fan-in and fan-out
		1.6Termination of unused inputs
2 nd week	1 st	1.7 AND and OR gates constructed from NAND and NOR gates
	2 nd	UNIT-2
		Boolean Algebra
		2.1 Boolean operations (OR, AND, NOT)
		2.2 Representation of logic circuits by Boolean expressions.

	3rd	2.3 Laws of Boolean algebra: Double inversion: A"=A OR identities: A+0 = A, A+1=1, A+A=A, A+A'=1 AND identities: A.0=0, A.1=A, A.A=A, A.A'=0 Cumulative laws: A+B=B+A, A.B=B.A Associative laws: (A+B)+C=A+(B+C), (A.B).C=A.(B.C) Distributive laws: A+(B.C)=(A+B).(A+C), A.(B+C)=A.B+A.C
3 rd week	1 st	DeMorgan's theorems:(A+B+C+)'=A'.B'.C',(A.B.C)'=A'+B'+C' Applications to logic circuit simplifications and design 2.4 Equivalent logic gates 2.5 NAND and NOR implementations of logic circuits.
	2 nd	2.6 Standard forms of Boolean expressions 2.6.1 Sum-of-products (SOP)
	3 rd	2.6.2 Product-of-sums (POS)

UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SUBJECT CODE: Th.3

NAME: DIGITAL ELECTRONICS

BRANCH: ELECTRONICS & TELECOMMUNICATION

SEMESTER: DIPLOMA -III

PERIODS PER WEEK: 3

NAME OF THE FACULTY: MANASI PRIYADARSHINI

NO OF CLASSES ALLOTTED PER WEEK: 3(14/07/2025 to 15/11/2025)

4 th week	1 st	2.7 Karnaugh mapping(K MAP)
	2^{nd}	K-map CONTINUED
	3 rd	K MAP CONTINUED
5 th week	1 st	UNIT-3 Combinational Logic Circuits 3.1 Half adder 3.2 Full adder
	2 nd	3.3Half Subtractor 3.4 Full Subtractor
	3 rd	3.5 :4 bit adder.
		3.6:Multiplexer (4:1)

UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SUBJECT CODE: Th.3

NAME: DIGITAL ELECTRONICS

BRANCH: ELECTRONICS & TELECOMMUNICATION

SEMESTER: DIPLOMA -III

PERIODS PER WEEK: 3

NAME OF THE FACULTY: MANASI PRIYADARSHINI

NO OF CLASSES ALLOTTED PER WEEK : $3(14/07/2025\ to\ 15/11/2025)$

Week/Date	Lecture	Topic to be covered
	4.01	
6th week	1 st	3.7:De- multiplexer (1:4)
		3.8:Decoder
	2 nd	3.9: Encoder
		3.10: Digital comparator (3 Bit)
	3 rd	Digital comparator (3 Bit) continued
7 th week	1 st	3.11:Seven segment Decoder
	2 nd	UNIT-4:
		Latches & Flip-Flops
		4.1. Basic latches
		4.1.1 NOR latch
		4.1.2 NAND latch
		4.1.3 Example uses of latches
	3 rd	4.1. Gated latches
		4.1.1 Gated S-R latch
		4.1.2 Gated D-latch

8 th week	1 st	4.1. Flip-flops: 4.1.1 Master-slave and edge-triggered principles 4.1.2 S-R flip-flop
	2 nd	4.1.1 D-type flip-flop
	3 rd	4.1.1 J-K flip-flop
		4.1.2 T-type flip-flop
		Flip-flop timing diagrams

UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING,ROURKELA

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SUBJECT CODE: Th.3

NAME: DIGITAL ELECTRONICS

BRANCH: ELECTRONICS & TELECOMMUNICATION

SEMESTER: DIPLOMA -III

PERIODS PER WEEK: 3

NAME OF THE FACULTY: MANASI PRIYADARSHINI

NO OF CLASSES ALLOTTED PER WEEK: 3(14/07/2025 to 15/11/2025)

Week/Date	<u>Lecture</u>	Topic to be covered
10 th week	1 st	UNIT-5: COUNTERS Circuit diagram and working principle of Binary counters
	2 nd	up-down counter (circuits, truth tables, and timing diagrams) Asynchronous counters and ripple counter
	3 rd	Synchronous counters Decade counter
11th week	1 st	Module-n counter and its combinations Divide-by-n counters obtained from truncated binary sequences
	2 nd	Synchronous counter design using D-type flip-flops
	3rd	Synchronous counter design using J-K flip- flops

12 th week	1st	UNIT-6: SHIFT REGISTERS Circuit diagram, truth tables, and timing diagrams of Shift Registers Serial input shift register
	2 nd	Serial/parallel load shift register
	3"	6.1 Shift register counters Ring counter

13 th week	1 st	T
13 th week	1	Self-
		starting ring counter
	2^{nd}	Johnson counter
		7.1 Define the terms ROM, RAM, PROM, EPROM.
		7.2 Draw a typical memory cell
		7.3 Design a small diode matrix ROM to serve as a code converter.
		7.4 Design and draw the logic diagram of a specified size memory system
		7.5 Operating principle of dynamic memory
		7.6 Advantages and disadvantages of dynamic memory vs. static memory
	3 rd	Difference between dynamic memory vs. static memory
		UNIT-7:
		SEMICONDUCTOR MEMORIES
		Define the terms ROM, RAM, PROM, EPROM
14th week	1 st	Draw a typical memory cell
		Design a small diode matrix ROM to serve as a code converter
	2 nd	Design and draw the logic diagram of a specified size memory system
		besign and araw the logic diagram of a specifica size memory system
	3 rd	
		Operating principle of dynamic memory
4 5th xxx 4	1 st	
15 th Week	130	Advantages and disadvantages of dynamic memory vs. static memory
		Difference between dynamic memory vs.
		static memory
	2 nd	UNIT-8:
		SEQUENTIAL CIRCUIT DESIGN
		Combinational vs. Sequential circuits
	3rd	Adder
	3	
	1 st	Subtractor
16th Week	2nd	decoder
10 WCCK	2	decoder
	$3^{\rm rd}$	multiplexer
	1 st	de-multiplexer
17 th Week	2nd	
1/ WEEK	2	comparator
	3 rd	Finite state machines- Concept only
18th Week	1 st	Short question discussion
	2nd	I and question discussion
	ŕ	Long question discussion
	3 rd	VST(ALL CHAPTER)