

## Lesson Plan for Engineering Mathematics-III(TH-1)

| Discipline      | Semester:-3 <sup>rd</sup> sem | Name of the Teaching Faculty:-                         |
|-----------------|-------------------------------|--------------------------------------------------------|
|                 | (ELECTRICAL & E&TC)           | Jajatendu Keshari Chand                                |
| Subject:-       | No of days/per week           | Semester from 01/07/2024 to 08/11/2024                 |
| Mathematics     | class allotted                | No of weeks:- 15                                       |
| Week            | Class Day                     | Theory Topics                                          |
| 1st             | 1 <sup>st</sup>               | INTRODUCTION OF IMAGINARY NUMBER I AND COMPLEX         |
|                 |                               | NUMBERS . CONJUGATE , MODULUS OF A COMPLEX             |
|                 |                               | NUMBER.                                                |
|                 | 2 <sup>nd</sup>               | GEOMETRICAL REPRESENTATION OF COMPLEX NUMBER.          |
|                 |                               | DETERMINATION OF AMPLITUDE OF COMPLEX NUMBER.          |
|                 | 3 <sup>rd</sup>               | PROPERTIES OF COMPLEX NUMBER AND PROBLEM ON IT.        |
|                 |                               | CONVERSION OF COMPLEX NUMBER TO ITS POLAR              |
|                 |                               | FORM. DETERMINATION OF RECIPROCAL OF A COMPLEX         |
|                 |                               | NUMBER.                                                |
|                 | 4 <sup>th</sup>               | SQUARE ROOT OF A COMPLEX NUMBER.                       |
| 2 <sup>nd</sup> | 1 <sup>st</sup>               | SQUARE ROOT OF A COMPLEX NUMBER.CUBE ROOTS OF          |
| 2               | -                             | UNITY AND PROBLEM ON IT.                               |
|                 | 2 <sup>nd</sup>               | STATE DEMOVIRE'S THEOREM AND PROBLEMS ON IT.           |
|                 | 3 <sup>rd</sup>               | PROBLEMS ON DEMOVIRE'S THEOREM.                        |
|                 | 4 <sup>th</sup>               | MATRICES AND TYPES OF MATRICES. SUBMATRIX AND          |
|                 | •                             | RANK OF A MATRIX                                       |
| 3rd             | 1 <sup>st</sup>               | DETERMINATION OF RANK OF MATRIX USING                  |
|                 | -                             | DEFINITION.ELEMENTARY ROW/COLUMN                       |
|                 |                               | OPERATIONS.ROW REDUCED ECHELON FORM.                   |
|                 | 2 <sup>nd</sup>               | DETERMINATION OF RANK OF A MATRIX BY REDUCING IT       |
|                 | _                             | TO ITS ECHELON FORM                                    |
|                 | 3 <sup>rd</sup>               | STATE ROUCHE'S THEOREM FOR CONSISTENCY OF A            |
|                 |                               | SYSTEM. TESTING CONSISTENCY AND SOLVE SYSTEM OF        |
|                 |                               | LINEAR EQUATION.                                       |
|                 | 4 <sup>th</sup>               | <b>SOLVING PROBLEM OF LINEAR SYSTEM OF EQUATION IN</b> |
|                 |                               | 3 VARIABLES.                                           |

| 4th             | 1st             | SOLVING LINEAR SYSTEM OF EQUATION                                                                                                                           |
|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 2 <sup>nd</sup> | DEFINATION OF HOMOGENOUS AND NON                                                                                                                            |
|                 |                 | HOMOGENOUS DIFF EQUATION WITH CONSTANT COEFFICIENT WITH EXAMPLES.                                                                                           |
|                 | 3 <sup>rd</sup> | DETERMINATION OF C.F. OF DIFF EQUATION.  DETERMINATION OF P.I. INTERMS OF OPERATOR D, FOR DIFFERENT FUNCTION.                                               |
|                 | 4 <sup>th</sup> | DETEMINATION OF PI FOR DIFFERENT FUNCTIONS                                                                                                                  |
| 5 <sup>th</sup> | 1 <sup>st</sup> | SOLUTION OF DIFFERENTIAL EQUATION.                                                                                                                          |
|                 | 2 <sup>nd</sup> | SOLVING PROBLEMS OF DIFFERENTIAL EQUATION                                                                                                                   |
|                 | 3rd             | DEFINE PARTIAL DIFFERENTIAL EQUATION . FORMATION OF PDE BY ELIMINATING ARBITRARY CONSTANTS AND FUNCTIONS.                                                   |
|                 | 4 <sup>th</sup> | SOLVING PDE IN THE FORM Pp+Qq=R                                                                                                                             |
| 6 <sup>th</sup> | 1st             | SOLVING PDE BY LAGRANGE'S MULTIPLIER METHOD                                                                                                                 |
|                 | 2 <sup>nd</sup> | SOLUTION OF PDE.                                                                                                                                            |
|                 | 3 <sup>rd</sup> | REVISION OF COMPLEX NUMBER, MATRIX, ODE AND PDE. DOUBT CLEARING                                                                                             |
|                 | 4 <sup>th</sup> | DEFINE GAMMA FUNCTION. EVALUTION OF GAMMA FUNCTION AT 1/2 AND NATURAL NUMBERS. CALCUTION OF GAMMA FUNCTION AT DIFFERENT POINTS USING RECURRENCE RELATION    |
| 7 <sup>th</sup> | 1 <sup>st</sup> | LAPLACE TRANSFORMATION . EXISTENCY OF LT. FORMULAS FOR LT OF SOME STANDARD FUNCTIONS                                                                        |
|                 | 2 <sup>nd</sup> | $1^{\rm ST}$ SHIFTING THEOREM AND PROBLEM ON IT. FORMULAS ON MULTIPLICATION BY $t^n$ and division by t. FORMULAS ON DERIVATIVE AND INTEGRATION OF FUNCTION. |
|                 | 3 <sup>rd</sup> | FINDING LT OF FUNCTIONS USING FORMULAS.                                                                                                                     |
|                 | 4 <sup>th</sup> | FINDING LT OF FUNCTIONS USING FORMULAS.                                                                                                                     |
| 8 <sup>th</sup> | 1 <sup>st</sup> | DEFINE INVERSE LT OF STANDARD FUNCTIONS AND FINDING INVERSE LT OF SOME FUNCTIONS                                                                            |
|                 | 2 <sup>nd</sup> | INTRODUCTION TO PARTIAL FRACTION METHOD FOR FINDING INVERSE LT                                                                                              |
|                 | 3 <sup>rd</sup> | FINDING INVERSE LT BY PF METHOD                                                                                                                             |
|                 | 4 <sup>th</sup> | STATE REVERSE OF 1 <sup>ST</sup> SHIFTING AND OTHER FORMULA<br>ON LT. SOLVING PROBLEM ON IT                                                                 |
| 9 <sup>th</sup> | 1 <sup>st</sup> | SOLVING PROBLEM ON INVERSE LT.                                                                                                                              |
|                 | 2 <sup>nd</sup> | SOLVING PROBLEM ON INVERSE LT USING FORMULAS.                                                                                                               |

|                  | 3 <sup>rd</sup> | PRACTICING PROBLEMS ON LT AND DOUBT CLEARING.                                                                                                                             |
|------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 4 <sup>th</sup> | CLASS TEST ON MATRICES, COMPLEX NUMBER, DIFF                                                                                                                              |
| 10 <sup>th</sup> |                 | EQUATION AND LT.                                                                                                                                                          |
| 10               | 1 <sup>st</sup> | PERIODIC FUNCTION. EXPLANATION OF GENERILISED BY PARTS RULE AND SOM E TRIGNOMETRIC FORMULAS.  DEFINE FOURIER SERIES AND EULER'S FORMULA FOR FINDING FOURIER COEFFICIENTS. |
|                  | 2 <sup>nd</sup> | DETERMINE FOURIER SERIES OF FUNCTIONS.  DETERMINATION OF FOURIER SERIES OF ODD AND EVEN FUNCTIONS.                                                                        |
|                  | 3 <sup>rd</sup> | DISCUSSION OF PROBLEMS OF FOURIER SERIES                                                                                                                                  |
|                  | 4 <sup>th</sup> | DISCUSSION OF PROBLEMS OF FOURIER SERIES. STATE DIRCHLET'S CONDITION FOR FINDING CONVERGENCY OF A FOURIER SERIES. OF                                                      |
| 11 <sup>th</sup> | 1 <sup>st</sup> | FUNCTIONS HAVING SOME POINTS OF DISCONTINUITY.  DISCUSSION OF PROBLEMS OF FOURIER SERIES OF FUNCTIONS HAVING DISCONTINUITIES.                                             |
|                  | 2 <sup>nd</sup> | DISCUSSION OF PROBLEMS OF FOURIER SERIES OF FUNCTIONS HAVING DISCONTINUITIES                                                                                              |
|                  | 3 <sup>rd</sup> | REVISION OF FOURIER SERIES CHAPTER WITH PRACTING MORE PROBLEMS.                                                                                                           |
|                  | 4 <sup>th</sup> | DISCUSSION OF LIMITATION OF AN ANALYTICAL METHOD OF SOLUTION OF ALGEBARIC EQUATION AND INTRODCTION OF NUMERICAL METHODS. EXPLANATION OF BISECTION METHOD.                 |
| 12 <sup>th</sup> | 1 <sup>st</sup> | PROBLEMS ON BISECTION METHOD.                                                                                                                                             |
|                  | 2 <sup>nd</sup> | EXAPLANATION OF NEWTON RAPHSON METHOD AND DISCUSSION OF PROBLEM.                                                                                                          |
|                  | 3 <sup>rd</sup> | DISCUSSION OF PROBLEMS ON NEWTON RAPHSON METHOD.                                                                                                                          |
|                  | 4 <sup>th</sup> | EXPLANATION OF FINITE DIFFERENCES AND FORM TABLE OF FORWARD AND BACKWARD DIFFERENCE. DEFINE SHIFT OPERATOR AND STATE RELATIONSHIPS BETWEEN DIFFERENT OPERATOR.            |
| 13 <sup>th</sup> | 1 <sup>st</sup> | DEFINCE INTERPOLATION AND FIND MISSING VALUES FORM TABLE.                                                                                                                 |
|                  | 2 <sup>nd</sup> | STATE NEWTON'S FORWARD AND BACKWARD INTERPOLATION FORMULA FOR EQUISPACED INTERVALS AND SOLVE PROBLEM ON THEM                                                              |
|                  | 3 <sup>rd</sup> | SOLVE PROBLEMS OF FORWARD AND BACKWARD INTERPOLATION.                                                                                                                     |
|                  | 4 <sup>th</sup> | STATE LAGRANGE'S INTERPOLATION FORMULA FOR UN EQUAL INTERVALS AND PRACTICE PROBLEM ON IT.                                                                                 |

| 15 <sup>th</sup> | 1 <sup>st</sup> | PRACTICING PROBLEMS ON INTERPOLATION AND DOUBT CLEARING.                                                                      |
|------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------|
|                  | 2 <sup>nd</sup> | EXPLAIN NUMERICAL INTEGRATION.STATE NEWTON COTE'S FORMULA. STATE TRAPEZOIDAL RULE AND COMPOSITE TRAPEZOIDAL RULE.             |
|                  | 3 <sup>rd</sup> | FIND INTERGRATIONS USING COMPOSITE TRAPEZOIDAL RULE. STATE SIMPSON'S 1/3 RULE AND COMPOSITE 1/3 RULE AND SOLVE PROBLEM ON IT. |
|                  | 4 <sup>th</sup> | SOLVE PROBLEMS OF NUMERICAL INTERGRATION AND DOUBT CLEARING                                                                   |

Jajaderdn Kreshain Cheend. Sr. Led Malhematics U. G. I. E, Rul-y