UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING ## **LESSON PLAN** | Discipline:
Mechanical | Semester: 3RD | Name of the Teaching faculty: MONALISHA SWAIN | |--|-----------------------------------|--| | Subject:
Thermal
Engineering-I
(Th-4) | No of Days/ Week class alloted: 4 | Semester from Date: 01. 07. 2024 To Date: 08.11.2024 No of weeks: 15 | | Week | Class | Topics | | 1 st | 1 st | Introduction | | | 2 nd | 1. Thermodynamic concept & Terminology 1.1 Thermodynamic Systems (closed, open, isolated) 1.2 Thermodynamic properties of a system (pressure, volume, temperature, entropy, enthalpy, Internal energy and units of measurement). 1.3 Intensive and extensive properties. | | | 3 rd | 1.4 Define thermodynamic processes, path, cycle, state, path function, point function. | | 2 nd | 1 st | 1.5 Thermodynamic Equilibrium. 1.6 Quasi-static Process.1. 7 Conceptual explanation of energy and its sources 1.8 Work , heat and comparison between the two. | | | 2 nd | 1.9 Mechanical Equivalent of Heat. 1.10Work transfer, Displacement work | | | 3 rd | 3. Properties Processes of perfect gas 3.1 Laws of perfect gas: Boyle's law, Charle's law, Avogadro's law, | | | 4 th | General gas equation, characteristic gas constant With numericals | | 3 rd | 1 st | Universal gas constant. 3.2 Explain specific heat of gas (Cp and Cv) 3.3 Relation between Cp & Cv. 3.4 Enthalpy of a gas With numericals | | | 2 nd | Dalton's law of partial pressure, Guy lussac law | | | 3 rd | 2. Laws of Thermodynamics 2.1 State & explain Zeroth law of thermodynamics. 2.2 State & explain First law of thermodynamics | | | 4 th | 3.5 Work done during a non- flow process. 3.6 Application of first law of thermodynamics to various non flow process (Isothermal, Isobaric,) | | 4 th | 1 st | Application of first law of thermodynamics to various non flow process(Isentropic and polytrophic process) | | | 2 nd | Application of first law of thermodynamics to various non flow process(polytrophic process) | | | 3 rd | Numerical problems on above processes | | | 4 th | 3.7 Free expansion | | 5 th | 1 st | 3.7 Throttling process | | | 2 nd | 2. Laws of Thermodynamics | | | | 2.3 Limitations of First law of thermodynamics | |------------------|-----------------|--| | | 3 rd | 2.4Application of First law of Thermodynamics (steady flow | | | | energy equation and its application to turbine and compressor) | | | 4 th | 2.4Application of First law of Thermodynamics (steady flow | | | | energy equation and its application to turbine and compressor) | | 6 th | 1 st | Problems on SFEE | | | 2 nd | Problems on SFEE | | | 3 rd | 2.4 Second law of thermodynamics (Claucius& Kelvin Plank | | | | statements). | | | 4 th | 2.4 Second law of thermodynamics (Claucius& Kelvin Plank | | | | statements). | | 7 th | 1 st | Application of second law in heat engine, its efficiency with | | | | numericals | | | 2 nd | Application of second law in heat engine, its efficiency with | | | | numericals | | | 3 rd | Application of second law in heat pump, its efficiency, COP with | | | | numericals | | | 4 th | Application of second law in heat pump, its efficiency, COP with | | | | numericals | | 8 th | 1 st | Application of second law in refrigerator, itsefficiency, COP with | | | | numericals, | | ath | 2 nd | Application of second law in refrigerator, itsefficiency, COP with | | | | numericals, | | | 3 rd | Revision | | | 4 th | Internal assessment | | 9 th | 1 st | Internal assessment | | | 2 nd | 4. Internal combustion engine | | | 3 rd | 4.1 Explain & classify I.C engine. | | | 3.4 | 4.2 Terminology of I.C Engine such as bore, dead centers, stroke | | | 4 th | volume, piston speed &RPM | | | 4 | 4.2 Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM | | 10 th | 1 st | 4.3 Explain the working principle of 2-stroke & 4- stroke engine | | 10 | 1 | C.I & S.I engine | | | 2 nd | 4.3 Explain the working principle of 2-stroke & 4- stroke engine | | | _ | C.I & S.I engine | | | 3 rd | 4.3 Explain the working principle of 2-stroke & 4- stroke engine | | | | C.I & S.I engine | | | 4 th | 4.4 Differentiate between 2-stroke & 4- stroke engine C.I & S.I | | | - | engine. | | 11 th | 1 st | 5. Gas Power Cycle | | | | 5.1 Carnot cycle | | | 2 nd | 5.1 Carnot cycle | | | 3 rd | 5.1 Carnot cycle with numericals | | | | · | | ļ | 4 th | 5.2 Otto cycle | | 12 th | 1 st | 5.2 Otto cycle | | | 3 rd | 5.3 Diesel cycle | |------------------|-----------------|---| | | 4 th | 5.3 Diesel cycle | | 13 th | 1 st | 5.3 Diesel cycle with numericals | | | 2 nd | 5.4 Dual cycle | | | 3 rd | 5.4 Dual cycle. | | | 4 th | 5.4 Dual cycle with numericals | | 14 th | 1 st | Comparison of all cycles | | | 2 nd | 6. Fuels and Combustion | | | | 6.1 Define Fuel. 6.2 Types of fuel. | | | 3 rd | 6.3 Application of different types of fuel. | | | 4 th | 6.4 Heating values of fuel. | | 15 th | 1 st | 6.5 Quality of I.C engine fuels Octane number, Cetane number. | | | 2 nd | 6.5 Quality of I.C engine fuels Octane number, Cetane number. | | | 3 rd | Previous year question discussion | | | 4 th | Previous year question discussion |