UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA

LESSON PLAN

SESSION-2024-25

SUBJECT: STRENGTH OF MATERIAL (THEORY- 02)

DEPARTMENT OF MECHANICAL ENGINEERING

Discipline: Mechanical Engineering	Semester: 3rd	Name of the Teaching Faculty: Er SISIR KUMAR DALAI
Subject: Strength of Material (Th-2)	No of Days/Week Class Allotted: 04	Semester starts From Date: 01.07.2024 to Date: 08.11.2024 No of Week: 15
Week	Class/Day	Theory/Practical Topics
1 st	1 st	CH.1 SIMPLE STRESS & STRAIN. Introduction to Strength of Material. Types of load, stresses & strains (Axial and tangential)
	2 nd	Poisson's ratio, Lateral and Linear strain. Numerical to find stress, strain, elongation and Poisson's ratio.
	3 rd	Hooke's law. Young's modulus, bulk modulus, modulus of rigidity, Relationbetween E & C, E & K.
	4 th	Relation between three elastic constants. Numerical
	1 st	Principle of super position. Numerical
9 nd	2 nd	Numerical on above.
	3 rd	Numerical on above.
	4 th	Stresses in composite section. Numerical
	1 st	Temperature stress and strain, Temperature stress in composite bar (single core). Numerical
3 rd	2 nd	Numerical on above.
3 ^{ru}	3 rd	Strain energy and resilience, Stress due to gradually applied load.
	4 th	Stress due to suddenly applied and impact load
	1 st	CH.2 THIN CYLINDER AND SPHERICAL SHELL UNDER INTERNAL PRESSURE. Introduction to Thin cylinder and spherical shell. Assumption for thin cylindrical shell. Hoop and longitudinal stress and strain.
4 th	2 nd	Determination of hoop stress and longitudinal stress.
	3 rd	Numerical to find safe pressure, thickness and diameter.
	4 th	Determination of Hoop strain, longitudinal strain and volumetric strain
5 th	1 st	Determination of Change in length, diameter and volume of thin cylindrical shell.
	2 nd	Numerical to find change in dimensions of thin cylindrical shell.
	3 rd	Numerical to find change in dimensions of thin cylindrical shell.
	4 th	CH. 3. TWO-DIMENSIONAL STRESS SYSTEM. Introduction to 2-dimensional stress system; Concept of Principal plane, Principal stress and strain; Stresses in oblique plane
6 th	1 st	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (i) direct stress in one direction only. Numerical
	2 nd	Numerical

Г		
	3 rd	Determination of normal stress, shear stress and resultant stress on an oblique plane of a bodywhich subjected to (ii) direct stress in two perpendicular directions. Numerical
	4 th	Numerical.
7 th	1 st	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (iii) shear stress only; Numerical
	2 nd	Numerical.
	3 rd	Determination of normal stress, shear stress and resultant stress on an oblique plane of a bodywhich subjected to (iv) direct stress in one direction and followed by shear stress. Problem
	4 th	Numerical on above.
8 th	1 st	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (iv) direct stress in two perpendicular directions and followed byshear stress. Problem.
	2 nd	Numerical on above.
	3 rd	Concept of Mohr's circle. Mohr's circle Problems.
	4 th	Mohr's circle Problems.
9 th	1 st	Class test 1
	2 nd	CH. 4 BENDING MOMENT AND SHEAR FORCE. Types of beam and load. Concepts of Shear force and bending moment.
	3 rd	Sign convention. Relationship between SF, BM and Loading
	4 th	Numerical to determine Shear Force and Bending moment diagram in cantilever beamsubjected to point load.
10 th	1 st	Numerical to determine Shear Force and Bending moment diagram in cantilever beamsubjected to U.D.L
	2 nd	Numerical to determine Shear Force and Bending moment diagram in simply supportedbeam subjected to point load.
	3 rd	Numerical to determine Shear Force and Bending moment diagram in simply supported beam subjected U.D.L.
	4 th	Numerical to determine Shear Force and Bending moment diagram in overhanging beamsubjected to point load.
11 th	1 st	Numerical to determine Shear Force and Bending moment diagram in overhanging beamsubjected U.D.L.
	2 nd	CH. 5 THEORY OF SIMPLE BENDING. Introduction to Theory of simple bending, Assumptions in the theory of bending
		, , , , , , , , , , , , , , , , , , ,
	3 rd	Neutral axis, Theory of simple bending

12 th	1 st	Section modulus of rectangular and circular beam sections
	2 nd	Numerical
	3 rd	Numerical
	4 th	CH. 6 COMBINED DIRECT AND BENDING STRESS. Define column, types of column, Axial load, Eccentric load on column.
13 th	1 st	Direct stresses, Bending stresses, Maximum & Minimum stresses in short column:for uniaxial system
	2 nd	Direct stresses, Bending stresses, Maximum & Minimum stresses in short column: forbiaxial system
	3 rd	Numerical
	4 th	Buckling load computation using Euler's formula (no derivation) in Columns with variousend conditions
14 th	1 st	Numerical on above.
	2 nd	CH. 7 TORSION. Torsion in shafts, Assumption of pure torsion
	3 rd	Theory of pure torsion
	4 th	Torsion equation for solid and hollow circular shaft, Numerical
15 th	1 st	Comparison between solid and hollow shaft subjected to pure torsion, torsional rigidity, Numerical
	2 nd	Numerical
	3 rd	Class test 2
	4 th	Previous year question discussion.