UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA

LESSON PLAN

SESSION-2023-24

SUBJECT: THERMAL ENGINEERING-II (THEORY-04)

DEPARTMENT OF MECHANICAL ENGINEERING

Discipline: Mechanical Engineering	Semester: 4th	Name of the Teaching Faculty: Er SISIR KUMAR DALAI	
Subject:		Semester starts	
Thermal Engineering-II	No of Days/Week	From Date: 16.01.2024	
(Th-4)	Class Allotted: 04	to Date: 26.04.2024	
(111-4)		No. Of Weeks: 15	
Week	Class/Day	Theory/Practical Topics	
1 st	1 st	1. Performance of I.C engine Introduction	
	2 nd	Define mechanical efficiency, Indicated thermal efficiency	
	3 rd	Relative Efficiency, brake thermal efficiency,	
	4 st	Overall efficiency Mean effective pressure & specific	
	1 st	fuel consumption.	
2 nd	2 nd	Define air-fuel ratio & calorific value of fuel.	
_	2 1	Work out problems to determine efficiencies & specific	
	3rd	fuel consumption.	
	1 st	Solve Numerical	
	2 nd	Solve Numerical	
3 rd		2. Air Compressor	
3	3 rd	Explain functions of compressor & industrial use of	
	-	compressor air	
	1 st	Classify air compressor	
4th		principle of operation.	
	3 rd	Describe the parts and working principle of reciprocating	
		Air compressor.	
	1 st	Explain the terminology of reciprocating compressor	
		Terminology such as bore, stroke, pressure ratio free air	
	2 nd	delivered &Volumetric efficiency.	
5th	3 rd	Derive the work done of single stage compressor.	
	4 th	Derive the work done of single stage compressor without	
		clearance	
	1 st	Derive the work done of single stage compressor with clearance	
6th	2 nd	Work done of Two stage compressor without clearance.	
our	3 rd	Solve Numerical	
	4 th	Solve Numerical	
		3. Properties of Steam	
7th	1 st	Difference between gas & vapours. Formation of steam.	
	2 nd	Formation of steam.	
	3 rd	Representation on P-V, T-S, H-S, & T-H diagram.	
	4 th	Definition & Properties of Steam.	
	1 st	Use of steam table & mollier chart for finding unknown	
8 th		properties.	
	2 nd	Non flow & flow process of vapour.	
	3 rd	P-V, T-S & H-S, diagram.	
9 th	1 st	P-V, T-S & H-S, diagram.	
	2 nd	Determine the changes in properties	
		Determine the changes in properties	
10 th		Solve Numerical	
	2 nd	Solve Numerical	
	2 3 rd	4. Steam Generator	
	<u> </u>	7. Jicani Generatui	

		Classification & types of Boiler.		
11 th	1 st	Important terms for Boiler.		
		Comparison between fire tube & Water tube Boiler.		
	2 nd	Description & working of common boilers (Cochran,		
		Lancashire, Babcock & Wilcox Boiler)		
	3 rd	Description & working of common boilers (Cochran,		
		Lancashire, Babcock & Wilcox Boiler)		
	4 th	Boiler Draught (Forced, induced & balanced)		
12 th	1 st	Boiler Draught (Forced, induced & balanced)		
	2 nd	Boiler mountings & accessories.		
	3 rd	Boiler mountings & accessories.		
	4 th	5. Steam Power Cycles		
		Carnot cycle with vapour.		
	1 st	Derive work & efficiency of the cycle.		
	2 nd	Rankine cycle.		
13 th	_	Representation in P-V, T-S & h-s diagram.		
	3 rd	Derive Work & Efficiency.		
	4 th	Effect of Various end conditions in Rankine cycle.		
14 th	1 st	Reheat cycle & regenerative Cycle.		
	2 nd	Solve simple numerical on Carnot vapour Cycle &		
		Rankine Cycle.		
	3 rd	Solve Numerical		
	4 th	6. Heat Transfer		
		Modes of Heat Transfer (Conduction, Convection,		
		Radiation).		
15 th	1 st	Fourier law of heat conduction and thermal conductivity		
		(k). Newton's laws of cooling.		
	2 nd	Radiation heat transfer (Stefan, Boltzmann & Kirchhoff's		
		law) only statement, no derivation & no numerical		
	a rd	problem.		
	3 rd	Solve Numerical		
	4 th	Black body Radiation, Definition of Emissivity,		
		absorptivity, & transmissibility.		

Learning Resources

Sl No.	Reference Book	Author Name	<u>Publisher Name</u>
01	Thermal Engineering	R.S. Khurmi	S.Chand
02	Thermal Engineering	A.R.Basu	Dhanpat Rai
03	Thermal Engineering	A.S. Sarao	Satya Prakash
04	Engineering Thermodynamics	P.k.Nag	TMH
05	Thermal Engineering	Mahesh M Rathore	TMH