UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA ## LESSON PLAN **SESSION-2023-24** **SUBJECT: ENGINEERING MECHANICS (THEORY-4)** ## DEPARTMENT OF MECHANICAL ENGINEERING | Semester: 1 ST | | Name of the Teaching Faculty: ER SISIR KUMAR DALAI, WORKSHOP SUPERINTENDENT | |--|--|--| | Discipline: MECH | ANICAL ENGINEERING | | | Subject: ENGINEERING MECHANICS (Th-04) | No. of days/per week class allotted: 04 | Semester From date: 16.08.2023 To Date: 12.12.2023 No. of Weeks: 15 | | Week | Class/Day | Theory / Practical Topics | | | 1 ST | Definitions of Mechanics, Statics, Dynamics, Rigid Bodies | | | 2 ND | Force System. Definition, Classification of force system according to plane & line of action. | | 1 ST | 3 RD | Characteristics of Force & effect of Force. Principles of Transmissibility & Principles of Superposition. Action & Reaction Forces & concept of Free Body Diagram. | | | 4 TH | Resolution of a Force. Definition, Method of Resolution, Types of Component forces, Perpendicular components & nonperpendicular components. | | | 1 ST | Composition of Forces. Definition, Resultant Force, Method of composition of forces. | | 2 ND | 2 ND | Analytical Method such as Law of Parallelogram of forces & method of resolution. | | | 3 RD | Graphical Method. Introduction, Space diagram, Vector diagram, Polygon law of forces. | | | 4 TH | Resultant of concurrent, non-concurrent & parallel force system by Analytical & Graphical Method. | | 3 RD | 1 ST | Moment of Force. Definition, Geometrical meaning of moment of a force, measurement of moment of a force & its S.I units. | | | 2 ND | Classification of moments according to direction of rotation, sign convention. | | | 3 RD | Law of moments, Varignon's Theorem | | | 4 TH | Couple – Definition, S.I. units, measurement of couple. | | 4 TH | 1 ST | Properties of couple, simple problems on Force systems | | Т | | | |------------------|--|--| | | 2 ND | Introduction to Equilibrium, Definition, condition of equilibrium. | | | | Analytical & Graphical conditions of | | | 3 RD | equilibrium for concurrent, non-concurrent | | | | & Free Body Diagram. | | | 4 TH | Lami's Theorem – Statement, Application | | | • | for solving various engineering problems. | | | 1 ST | Definition of friction & Frictional forces | | | 2 ND | Define Limiting frictional force & | | 5 TH | | Coefficient of Friction. | | 5 | 3 RD | Define Angle of Friction & Repose & Laws | | | 3 RD | of Friction | | | 4 TH | Advantages & Disadvantages of Friction. | | 6 TH | 1 ST | Discussion General friction problem | | | 2 ND | Solving problem | | | 3 RD | Solving Problem | | | 4 TH | Equilibrium of bodies on level plane – Force | | | | applied on horizontal plane | | | 1 ST | Problem solved of Force applied on | | | 131 | horizontal plane | | | 2 ND | Equilibrium of bodies on level plane – Force | | 7 TH | | applied on inclined plane | | | 3 RD | Solving Problems of Force applied on | | | | inclined plane | | | 4 TH | Ladder, Wedge Friction | | | 1 ST | Solving Problems of Ladder friction | | | 2 ND | Solving Problems of Ladder friction | | 8 TH | 3 RD | Solving Problems of Wedge friction | | o | 4 TH | Introduction to centroid and M.I, Lami's | | | | Theorem – Statement, Application for | | | | solving various engineering problems. | | | | Centroid of geometrical figures such as | | 1 ST | 1 ST | squares, rectangles, triangles, circles, | | | | semicircles & quarter circles. | | | Centroid of composite figures, problems on | | | 9 TH | Z | centroid | | | 3 RD | Moment of Inertia – Definition, Parallel axis | | | 3 | & Perpendicular axis Theorems. | | | 4 TH | M.I. of plane lamina & different | | | | engineering sections. | | | 1 ST | Problems on M.I and revision. | | | 2 ND | Definition of simple machine, velocity ratio | | | | of simple and compound gear train. | | 10 TH | 3 RD | Explain simple & compound lifting machine | | | 4 TH | Define M.A, V.R.& Efficiency and State the | | | | relation between them. | | | 5 TH | State Law of Machine, Reversibility of | | | | Machine, Self-Locking Machine. | | 11 TH Study of simple machines – simple axle wheel. 2 ND Solving problems of simple axle & wheel. 3 RD Discuss Single purchase crab winch. 4 TH Solving problems of Single purchase crawinch. 1 Solving problems of Single purchase crawinch. 2 ND Solving problems of double purchase crawinch. Solving problems of double purchase crawinch. | el. | |---|-------| | 11 TH 2 ND 3 RD Discuss Single purchase crab winch. 4 TH Solving problems of Single purchase crawinch. 4 TH Discuss double purchase crawinch. 2 ND Solving problems of Single purchase crawinch. 5 Solving problems of double purchase crawinch. 2 ND Solving problems of double purchase crawinch. | | | 11 TH 3 RD Discuss Single purchase crab winch. 4 TH Solving problems of Single purchase crawwinch. Discuss double purchase crab winch. 2 ND Solving problems of double purchase crawwinch. winch | | | 3 RD Discuss Single purchase crab winch. 4 TH Solving problems of Single purchase crawwinch. 1 ST Discuss double purchase crab winch. 2 ND Solving problems of double purchase crawwinch. winch | ab | | winch. 1 ST Discuss double purchase crab winch. Solving problems of double purchase c winch | ab | | winch. 1 ST Discuss double purchase crab winch. Solving problems of double purchase c winch | | | 2 ND Solving problems of double purchase c winch | | | 12 TH winch | | | 12 TH winch | rab | | | | | 3 RD Discuss Worm & Worm Wheel | | | 4 TH Solving problems of Worm& Worm Wh | eel | | 1 ST Discuss Screw Jack | | | 2 ND Solving problems of screw jack | | | 13 TH 3 RD Types of hoisting machine-like derricks | etc. | | Their use and working principle | | | 4 TH Kinematics & Kinetics, Principles of | | | Dynamics, Newton's Laws of Motion | | | 1 ST Motion of Particle acted upon by a | | | constant force, Equations of motion | | | De-Alembert's Principle, Work, Power, | | | 14 TH Energy & its Engineering Applications | | | 3 RD Kinetic & Potential energy & its applica | tion. | | 4 TH Momentum & impulse, conservation o | f | | energy & linear momentum | | | 1 ST Collision of elastic bodies, and Coeffic | ent | | of Restitution. | | | 15 TH 2 ND Revision | | | 3 RD Revision | | | 4 TH Revision | | ## **Learning Resources:** - 1. Text Book of Engineering Mechanics R.S Khurmi (S. Chand). - 2. Engineering Mechanics A.R. Basu (TMH Publication Delhi) - 3. Engineering Machines Basudev Bhattacharya (Oxford University Press).