UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING

LESSON PLAN

Discipline: Mechanical	Semester: 3RD	Name of the Teaching faculty: MONALISHA SWAIN
Subject: Thermal Engineering-I (Th-4)	No of Days/ Week class alloted: 4	Semester from Date: 01. 08. 2023 To Date: 30.11.2023 No of weeks: 15
Week	Class	Topics
1 st	1 st	Introduction
	2 nd	1. Thermodynamic concept & Terminology 1.1 Thermodynamic Systems (closed, open, isolated) 1.2 Thermodynamic properties of a system (pressure, volume, temperature, entropy, enthalpy, Internal energy and units of measurement). 1.3 Intensive and extensive properties.
	3 rd	1.4 Define thermodynamic processes, path, cycle, state, path function, point function.
2 nd	1 st	1.5 Thermodynamic Equilibrium. 1.6 Quasi-static Process.1. 7 Conceptual explanation of energy and its sources 1.8 Work , heat and comparison between the two.
	2 nd	1.9 Mechanical Equivalent of Heat. 1.10Work transfer, Displacement work
	3 rd	3. Properties Processes of perfect gas 3.1 Laws of perfect gas: Boyle's law, Charle's law, Avogadro's law,
	4 th	General gas equation, characteristic gas constant With numericals
3 rd	1 st	Universal gas constant. 3.2 Explain specific heat of gas (Cp and Cv) 3.3 Relation between Cp & Cv. 3.4 Enthalpy of a gas With numericals
	2 nd	Dalton's law of partial pressure, Guy lussac law
	3 rd	2. Laws of Thermodynamics 2.1 State & explain Zeroth law of thermodynamics. 2.2 State & explain First law of thermodynamics
	4 th	3.5 Work done during a non- flow process. 3.6 Application of first law of thermodynamics to various non flow process (Isothermal, Isobaric,)
4 th	1 st	Application of first law of thermodynamics to various non flow process(Isentropic and polytrophic process)
	2 nd	Application of first law of thermodynamics to various non flow process(polytrophic process)
	3 rd	Numerical problems on above processes
	4 th	3.7 Free expansion
5 th	1 st	3.7 Throttling process
	2 nd	2. Laws of Thermodynamics

		2.3 Limitations of First law of thermodynamics
	3 rd	2.4Application of First law of Thermodynamics (steady flow
		energy equation and its application to turbine and compressor)
	4 th	2.4Application of First law of Thermodynamics (steady flow energy equation and its application to turbine and compressor)
6 th	1 st	Problems on SFEE
	2 nd	Problems on SFEE
	3 rd	2.4 Second law of thermodynamics (Claucius& Kelvin Plank statements).
	4 th	2.4 Second law of thermodynamics (Claucius& Kelvin Plank statements).
7 th	1 st	Application of second law in heat engine, its efficiency with numericals
	2 nd	Application of second law in heat engine, its efficiency with numericals
	3 rd	Application of second law in heat pump, itsefficiency, COP with numericals
	4 th	Application of second law in heat pump, its efficiency, COP with numericals
8 th	1 st	Application of second law in refrigerator, itsefficiency, COP with numericals,
	2 nd	Application of second law in refrigerator, itsefficiency, COP with numericals,
	3 rd	Revision
	4 th	Internal assessment
9 th	1 st	Internal assessment
	2 nd	4. Internal combustion engine4.1 Explain & classify I.C engine.
	3 rd	4.2 Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM
	4 th	4.2 Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM
10 th	1 st	4.3 Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine
	2 nd	4.3 Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine
	3 rd	4.3 Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine
	4 th	4.4 Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine.
11 th	1 st	5. Gas Power Cycle 5.1 Carnot cycle
	2 nd	5.1 Carnot cycle
	3 rd	5.1 Carnot cycle with numericals
	4 th	5.2 Otto cycle
12 th	1 st	5.2 Otto cycle
	2 nd	5.2 Otto cycle with numericals

	3 rd	5.3 Diesel cycle
	4 th	5.3 Diesel cycle
13 th	1 st	5.3 Diesel cycle with numericals
	2 nd	5.4 Dual cycle
	3 rd	5.4 Dual cycle.
	4 th	5.4 Dual cycle with numericals
14 th	1 st	Comparison of all cycles
	2 nd	6. Fuels and Combustion
		6.1 Define Fuel. 6.2 Types of fuel.
	3 rd	6.3 Application of different types of fuel.
	4 th	6.4 Heating values of fuel.
15 th	1 st	6.5 Quality of I.C engine fuels Octane number, Cetane number.
	2 nd	6.5 Quality of I.C engine fuels Octane number, Cetane number.
	3 rd	Previous year question discussion
	4 th	Previous year question discussion