UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA

LESSON PLAN

SESSION-2022-23

SUBJECT: STRENGTH OF MATERIAL (THEORY- 02)

DEPARTMENT OF MECHANICAL ENGINEERING

Discipline: Mechanical Engineering	Semester: 3rd	Name of the Teaching Faculty: Er SISIR KUMAR DALAI	
Subject: Strength of Material (Th-2) No of Days/Week Class Allotted: 04		Semester starts From Date: 15.09.2022 to Date: 22.12.2022 No. Of Weeks: 15	
Week	Class/Day	Theory/Practical Topics	
	1 st	CH.1 SIMPLE STRESS & STRAIN. Introduction to Strength of Material. Types of load, stresses & strains (Axial and tangential)	
1 st	2 nd	Poisson's ratio, Lateral and Linear strain. Numerical to find stress, strain, elongation and Poisson's ratio.	
I.	3 rd	Hooke's law. Young's modulus, bulk modulus, modulus of rigidity, Relationbetween E & C, E & K.	
	4 th	Relation between three elastic constants. Numerical	
	1 st	Principle of super position. Numerical	
3 nd	2 nd	Numerical on above.	
	3 rd	Numerical on above.	
	4 th	Stresses in composite section. Numerical	
	1 st	Temperature stress and strain, Temperature stress in composite bar (single core). Numerical	
3 rd	2 nd	Numerical on above.	
3	3 rd	Strain energy and resilience, Stress due to gradually applied load.	
	4 th	Stress due to suddenly applied and impact load	
4 th	1 st	CH.2 THIN CYLINDER AND SPHERICAL SHELL UNDER INTERNAL PRESSURE. Introduction to Thin cylinder and spherical shell. Assumption for thin cylindrical shell. Hoop and longitudinal stress and strain.	
4	2 nd	Determination of hoop stress and longitudinal stress.	
	3 rd	Numerical to find safe pressure, thickness and diameter.	
	4 th	Determination of Hoop strain, longitudinal strain and volumetric strain	
5 th	1 st	Determination of Change in length, diameter and volume of thin cylindrical shell.	
	2 nd	Numerical to find change in dimensions of thin cylindrical shell.	
	3 rd	Numerical to find change in dimensions of thin cylindrical shell.	
	4 th	CH. 3. TWO-DIMENSIONAL STRESS SYSTEM. Introduction to 2-dimensional stress system; Concept of Principal plane, Principal stress and strain; Stresses in oblique plane	
6 th	1 st	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (i) direct stress in one direction only. Numerical	
	2 nd	Numerical	

Determination of normal stress, shear resultant stress on an oblique plane of a subjected to (ii) direct stress in two pedirections. Numerical 4th Numerical.	body which	
· Warnertean		
	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (iii) shear stress only; Numerical	
2 nd Numerical.		
3 rd resultant stress on an oblique plane of a	Determination of normal stress, shear stress and resultant stress on an oblique plane of a bodywhich subjected to (iv) direct stress in one direction and followed by shear stress. Problem	
4 th Numerical on above.		
1 st resultant stress on an oblique plane of a subjected to (iv) direct stress in two pe	Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (iv) direct stress in two perpendicular directions and followed byshear stress. Problem.	
2 nd Numerical on above.		
3 rd Concept of Mohr's circle. Mohr's circle Proble	Concept of Mohr's circle. Mohr's circle Problems.	
4 th Mohr's circle Problems.		
1 st CH. 4 BENDING MOMENT AND SHEAR FORC	E.	
Types of beam and load.		
2 nd Concepts of Shear force and bending momer	nt.	
g th Sign convention. Relationship between S Loading	Sign convention. Relationship between SF, BM and Loading	
Numerical to determine Shear Force ar moment diagram in cantilever beamsubject load.	_	
	Numerical to determine Shear Force and Bending moment diagram in cantilever beamsubjected to U.D.L	
Numerical to determine Shear Force ar moment diagram in simply supportedbeam s point load.	•	
Numerical to determine Shear Force ar moment diagram in simply supported bean U.D.L.	_	
Numerical to determine Shear Force ar moment diagram in overhanging beamsubject load.	J	
1 st Numerical to determine Shear Force ar moment diagram in overhanging beamsubje	_	
CH. 5 THEORY OF SIMPLE BENDING.		
	ssumptions	
11 th 2 nd Introduction to Theory of simple bending, A in the theory of bending		
introduction to Theory of Simple Bending, A		

	1 st	Section modulus of rectangular and circular beam sections	
12 th	2 nd	Numerical	
	3 rd	Numerical	
	4 th	CH. 6 COMBINED DIRECT AND BENDING STRESS. Define column, types of column, Axial load, Eccentric load on column.	
13 th	1 st	Direct stresses, Bending stresses, Maximum & Minimum stresses in short column:for uniaxial system	
	2 nd	Direct stresses, Bending stresses, Maximum & Minimum stresses in short column: forbiaxial system	
	3 rd	Numerical	
	4 th	Buckling load computation using Euler's formula (no derivation) in Columns with variousend conditions	
14 th	1 st	Numerical on above.	
	2 nd	CH. 7 TORSION. Torsion in shafts, Assumption of pure torsion	
	3 rd	Theory of pure torsion	
	4 th	Torsion equation for solid and hollow circular shaft, Numerical	
	1 st	Comparison between solid and hollow shaft subjected to pure torsion, torsional rigidity, Numerical	
4.Eth	2 nd	Numerical	
15 th	3 rd	Class test 2	
	4 th	Previous year question discussion.	

Learning resources:

Sl. No.	Author	Title of the book	Publisher
01	S Ramamrutham	Strength of Materials	Dhanpat Rai
02	R K Rajput	Strength of Materials	S.Chand
03	R.S khurmi	Strength of Materials	S.Chand
04	G H Ryder	Strength of Materials	Mc Millon and co. lmtd
05	S Timoshenko and D H	Strength of Materials	TMH
	Young		